skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Camargo, Suzana J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Genesis potential indices (GPIs) are widely used to understand the climatology of tropical cyclones (TCs). However, the sign of projected future changes depends on how they incorporate environmental moisture. Recent theory combines potential intensity and midtropospheric moisture into a single quantity called the ventilated potential intensity, which removes this ambiguity. This work proposes a new GPI (GPIυ) that is proportional to the product of the ventilated potential intensity and the absolute vorticity raised to a power. This power is estimated to be approximately 5 by fitting observed tropical cyclone best track and ECMWF Reanalysis v5 (ERA5) data. Fitting the model with separate exponents yields nearly identical values, indicating that their product likely constitutes a single joint parameter. Likewise, results are nearly identical for a Poisson model as for the power law. GPIυperforms comparably well to existing indices in reproducing the climatological distribution of tropical cyclone genesis and its covariability with El Niño–Southern Oscillation, while only requiring a single fitting exponent. When applied to phase 6 of the Coupled Model Intercomparison Project (CMIP6) projections, GPIυpredicts that environments globally will become gradually more favorable for TC genesis with warming, consistent with prior work based on the normalized entropy deficit, though significant changes emerge only at higher latitudes under relatively strong warming. The GPIυhelps resolve the debate over the treatment of the moisture term and its implication for changes in TC genesis favorability with warming, and its clearer physical interpretation may offer a step forward toward a theory for genesis across climate states. Significance StatementTropical cyclones cause significant human impacts globally, yet we currently do not understand what controls the number of storms that form each year. Tropical cyclone formation depends on fine-scale processes that our climate models cannot capture. Thus, it is common to use parameters from the background environment to represent regions favorable for cyclone formation. However, there are a variety of formulations because the link between environment and cyclone formation is complicated. This work proposes a new method that unifies a few common formulations, which helps resolve a divergence in current explanations of how tropical cyclone formation may change under climate change. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract In response to greenhouse gas forcing, most coupled global climate models project the tropical Pacific SST trend toward an “El Niño–like” state, with a reduced zonal SST gradient and a weakened Walker circulation. However, observations over the last five decades reveal a trend toward a more “La Niña–like” state with a strengthening zonal SST gradient. Recent research indicates that the identified trend differences are unlikely to be entirely due to internal variability and probably result, at least in part, from systematic model biases. In this study, Community Earth System Model, version 2 (CESM2), is used to explore how mean-state biases within the model may influence its forced response to radiative forcing in the tropical Pacific. The results show that using flux adjustment to reduce the mean-state bias in CESM2 over the tropical regions results in a more La Niña–like trend pattern in the tropical Pacific, with a strengthening of the tropical Pacific zonal SST gradient and a relatively enhanced Walker circulation, as hypothesized to occur if the ocean thermostat mechanism is stronger than the atmospheric mechanisms which by themselves would weaken the Walker circulation. We also find that the historical strengthening of the tropical Pacific zonal gradient is transient but persists into the near term in a high-emissions future warming scenario. These results suggest the potential of flux adjustment as a method for developing alternative projections that represent a wider range of possible future tropical Pacific warming scenarios, especially for a better understanding of regional patterns of climate risk in the near term. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026
  3. Abstract A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a secondposteriorconstrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top‐of‐atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45‐dimensional parameter configurations are retained to generate radiatively‐balanced, auto‐tuned atmospheres that were used in two E3 submissions to CMIP6. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Poleward migration is an interesting phenomenon regarding the shift of Tropical Cyclones (TCs) towards higher latitudes. As climate warms, TCs’ intensification is promoted, and yet over certain oceans, TCs may also migrate poleward into colder waters. To what extent this poleward shift can impact future TC’s intensification is unclear, and a quantitative understanding of these competing processes is lacking. Through investigating one of the most likely TC basins to experience poleward migration, the western North Pacific (WNP), here we explore the issue. Potential Intensity (PI, TC’s intensification upper bound) along TC’s intensification locations (from genesis to the lifetime maximum intensity location) are analysed. We find that poleward migration can partially cancel global warming’s positive impact on future WNP TC’s intensification. With poleward migration, the PI increasing trend slope is gentler. We estimate that poleward migration can reduce the increasing trend slope of the proportion of Category-5 PI by 42% (22%) under a strong (moderate) emission pathway; and 68% (30%) increasing trend slope reduction for the average PI. 
    more » « less
  5. Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. Consequently, the role of enhanced horizontal resolution in improved process representation in all components of the climate system continues to be of great interest. Recent simulations suggest the possibility of significant changes in both large-scale aspects of the ocean and atmospheric circulations and in the regional responses to climate change, as well as improvements in representations of small-scale processes and extremes, when resolution is enhanced. The first phase of the High-Resolution Model Intercomparison Project (HighResMIP1) was successful at producing a baseline multi-model assessment of global simulations with model grid spacings of 25–50 km in the atmosphere and 10–25 km in the ocean, a significant increase when compared to models with standard resolutions on the order of 1° that are typically used as part of the Coupled Model Intercomparison Project (CMIP) experiments. In addition to over 250 peer-reviewed manuscripts using the published HighResMIP1 datasets, the results were widely cited in the Intergovernmental Panel on Climate Change report and were the basis of a variety of derived datasets, including tracked cyclones (both tropical and extratropical), river discharge, storm surge, and impact studies. There were also suggestions from the few ocean eddy-rich coupled simulations that aspects of climate variability and change might be significantly influenced by improved process representation in such models. The compromises that HighResMIP1 made should now be revisited, given the recent major advances in modelling and computing resources. Aspects that will be reconsidered include experimental design and simulation length, complexity, and resolution. In addition, larger ensemble sizes and a wider range of future scenarios would enhance the applicability of HighResMIP. Therefore, we propose the High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) to improve and extend the previous work, to address new science questions, and to further advance our understanding of the role of horizontal resolution (and hence process representation) in state-of-the-art climate simulations. With further increases in high-performance computing resources and modelling advances, along with the ability to take full advantage of these computational resources, an enhanced investigation of the drivers and consequences of variability and change in both large- and synoptic-scale weather and climate is now possible. With the arrival of global cloud-resolving models (currently run for relatively short timescales), there is also an opportunity to improve links between such models and more traditional CMIP models, with HighResMIP providing a bridge to link understanding between these domains. HighResMIP also aims to link to other CMIP projects and international efforts such as the World Climate Research Program lighthouse activities and various digital twin initiatives. It also has the potential to be used as training and validation data for the fast-evolving machine learning climate models. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less
  7. In 2021, people of Hispanic and Latinx origin made up 6% of the atmospheric and Earth sciences workforce of the United States, yet they represent 20% of the population. Motivated by this disparity in Hispanic and Latinx representation in the atmospheric and Earth science workforce, this manuscript documents the lack of representation through existing limited demographic data. The analysis presents a clear gap in participation by Hispanic and Latinx people in academic settings, with a widening gap through each education and career stage. Several factors and challenges impacting the representation disparity include the lack of funding for and collaboration with Hispanic-serving institutions, limited opportunities due to immigration status, and limited support for international research collaborations. We highlight the need for actionable steps to address the lack of representation and provide targeted recommendations to federal funding agencies, educational institutions, faculty, and potential employers. While we wait for systemic cultural change from our scientific institutions, grassroots initiatives like those proudly led by the AMS Committee for Hispanic and Latinx Advancement will emerge to address the needs of the Hispanic and Latinx scientific and broader community. We briefly highlight some of those achievements. Lasting cultural change can only happen if our leaders areactiveallies in the creation of a more diverse, equitable, and inclusive future. Alongside our active allies we will continue to champion for change in our weather, water, and climate enterprise. 
    more » « less
  8. Abstract Tropical cyclones (TCs) cause devastating damage to life and property. Historical TC data is scarce, complicating adequate TC risk assessments. Synthetic TC models are specifically designed to overcome this scarcity. While these models have been evaluated on their ability to simulate TC activity, no study to date has focused on model performance and applicability in TC risk assessments. This study performs the intercomparison of four different global-scale synthetic TC datasets in the impact space, comparing impact return period curves, probability of rare events, and hazard intensity distribution over land. We find that the model choice influences the costliest events, particularly in basins with limited TC activity. Modelled direct economic damages in the North Indian Ocean, for instance, range from 40 to 246 billion USD for the 100-yr event over the four hazard sets. We furthermore provide guidelines for the suitability of the different synthetic models for various research purposes. 
    more » « less